32 research outputs found

    Scoring Protein Relationships in Functional Interaction Networks Predicted from Sequence Data

    Get PDF
    The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins

    Protein structure and evolution: are they constrained globally by a principle derived from information theory?

    Get PDF
    That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution) of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information) defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified) that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids) where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein

    Mind the Gap: Transitions Between Concepts of Information in Varied Domains

    Get PDF
    The concept of 'information' in five different realms – technological, physical, biological, social and philosophical – is briefly examined. The 'gaps' between these conceptions are dis‐ cussed, and unifying frameworks of diverse nature, including those of Shannon/Wiener, Landauer, Stonier, Bates and Floridi, are examined. The value of attempting to bridge the gaps, while avoiding shallow analogies, is explained. With information physics gaining general acceptance, and biology gaining the status of an information science, it seems rational to look for links, relationships, analogies and even helpful metaphors between them and the library/information sciences. Prospects for doing so, involving concepts of complexity and emergence, are suggested

    Analog Circuits—Signal Conditioning and Conversion

    No full text

    An Interactive and Collaborative Suite for Knowledge Delivery

    Get PDF
    One of the main factors limiting the quality of industrial NDE radiographic images and infrared images is unsharpness [1, 2, 3, 4]. Unsharpness degrades the quality of images. It blurs edges and details of images. Unsharpness is caused by various factors such as the diffuse radiation, the finite size of the radiation source, the scattering in the specimen, the scattering in the film emulsion, and the observation system transfer function. Unsharpness can be mathematically represented as a result of a convolution and its effect can be reduced by a deconvolution algorithm. Many deconvolution algorithms have been developed to enhance images. The least-squares (Wiener) filter is an optimal statistical filter in an average sense and it can be applied to deconvolve an image [5]. The constrained least-squares filter is designed to satisfy a certain constraint so that it is optimum to deconvolve each given image [5]. The maximum entropy deconvolution method has been demonstrated that it is a superior technique for image restoration [6, 7]. However, the constrained least-squares filter and the maximum entropy method require a lot of computational time. In practice, the least-squares (Wiener) filter is often used
    corecore